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Abstract

In [P.K. Moore, Effects of basis selection and h-refinement on error estimator reliability and solution efficiency for
higher-order methods in three space dimensions, Int. J. Numer. Anal. Mod. 3 (2006) 21–51] a fixed, high-order h-refinement
finite element algorithm, Href, was introduced for solving reaction-diffusion equations in three space dimensions. In this
paper Href is coupled with continuation creating an automatic method for solving regularly and singularly perturbed
reaction-diffusion equations. The simple quasilinear Newton solver of Moore, (2006) is replaced by the nonlinear solver
NITSOL [M. Pernice, H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput. 19
(1998) 302–318]. Good initial guesses for the nonlinear solver are obtained using continuation in the small parameter �.
Two strategies allow adaptive selection of �. The first depends on the rate of convergence of the nonlinear solver and the
second implements backtracking in �. Finally a simple method is used to select the initial �. Several examples illustrate
the effectiveness of the algorithm.
� 2006 Elsevier Inc. All rights reserved.

MSC: 65N30; 65N50; 92E20

Keywords: Adaptive finite elements; Continuation methods; Perturbation problems; Reaction-diffusion equations
1. Introduction

A significant effort has been devoted to solving regularly and especially singularly perturbed reaction-dif-
fusion equations. Several difficulties arise in solving such problems. Since boundary layers are often present a
strategy for enhancing the discretization in these regions is essential. One approach, also used for convection-
diffusion problems, employs fitted meshes such as Shishkin- or Bakhvalov-type meshes [22,24,26,37]. A
related effort utilizes the high-order of pseudospectral methods coupled with special coordinate transforma-
tions to ensure that at least one collocation point lies in the boundary layer [23,39]. In more than one dimen-
sion these meshes can be anisotropic [1,21,41]. Generation of such grids often depends on a priori knowledge
of the location of the boundary layers and does not lend itself easily to automation. Alternatively adaptivity
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can be used to generate graded meshes [6,8–10,19,20,25]. Adaptive methods have become ubiquitous in the
development of automatic codes that require minimal user intervention [3]. These methods depend on accu-
rate error estimation. Adaptive techniques come in three major varieties: grid refinement (h-refinement),
order variation (p-refinement), grid equidistribution (r-refinement); and combinations thereof. In one dimen-
sion Kopteva et al. [19] have developed a grid equidistribution strategy based on a monitor function [11] cou-
pled with a finite difference discretization. Castaings and Navon [10] compared the h-refinement adaptive
elliptic solver PLTMG [6] with PLTMG combined with Shishkin meshes and no adaptivity in two dimen-
sions. Melenk and Schwab [25] created a hp-adaptive finite element solver for linear singularly perturbed
reaction-diffusion equations in two dimensions. Kunert [20] has developed an h-adaptive finite element
approach that uses anisotropic meshes for linear singularly perturbed reaction diffusion equations in three
dimensions.

For nonlinear problems there is the additional difficulty of convergence failure for iterative methods such as
Newton’s method. Performance may be enhanced through techniques such as backtracking [2,6,9,33]. If these
are not sufficient obtaining better initial guesses of the solution can also lead to improved performance. For
either automatic codes, where the initial grid is often uniform, or fixed-grid codes using Shishkin- or Bakhva-
lov-meshes this can be problematic if boundary layers are present. One approach to obtaining good initial
guesses is to employ continuation in the small parameter � [8,9]. Continuation methods typically solve the
problem for a decreasing sequence of � values using solutions at previous values to generate an initial guess
at a subsequent value of �. Continuation can also improve the reliability of error estimates since many estima-
tors have been developed for problems without boundary layers. Continuation should be coupled with adap-
tivity since for larger values of � coarser grids are likely to be sufficient leading to smaller problems at the
beginning. Fixed grid methods coupled with continuation on the other hand will require the solution of large
problems throughout.

Herein, I consider a code that combines continuation with the nonlinear solver NITSOL [33] and the
high-order adaptive finite element method Href [32]. To solve the linear systems in NITSOL, GMRES

[35] coupled with ILUT preconditioning [34] is employed. This adaptive-continuation code, referred to as
Cont3d, is used to solve reaction-diffusion equations of the form
�r � ðDðx; �ÞruÞ ¼ f ðu; x; �Þ; x ¼ ðx1; x2; x3Þ 2 X � ðX 1
0;X

1
1Þ � ðX 2

0;X
2
1Þ � ðX 3

0;X
3
1Þ; ð1Þ

uðxÞ ¼ bðx; �Þ; x 2 oXd ;
ou
om
ðxÞ ¼ 0; x 2 oXn; ð2Þ
where oX = oXd [ oXn and oXd (oXn) is the union of md (mn) faces of X. Thus, md + mn = 6. Throughout I
assume that (1) and (2) has an isolated solution of appropriate smoothness and an initial guess can be found
sufficiently close to it. The user is required to provide initial (�I) and final (�F) values of the parameter �, rou-
tines for the functions D, f and b and their partial derivatives, as well as an initial guess of the solution, uI(x),
when � = �I. When b(x,�I) ” B a convenient choice for uI(x) is uI(x) = B.

Nonlinear reaction-diffusion equations may have multiple solutions [7,12,16,18]. Computing these solutions
depends on having multiple good initial guesses. For one class of non-perturbed problems (1) with D(x,�) ” 1
and continuity and growth conditions on f(u,x) [12] numerical methods based on the mountain pass lemma
[12] or constrained mountain pass lemma [16] have been developed for finding multiple solutions. These meth-
ods could serve as preprocessors for Cont3d generating appropriate initial guesses uI(x) and will be investi-
gated in a subsequent effort.

Several additional features have been added to Cont3d to improve its robustness. The initial grid is chosen
to be uniform. Since the nonlinear solver might not converge for the user’s choice of �I and uI(x) a simple
startup procedure is used that increases �I until a solution is obtained. An adaptive strategy for selecting suc-
cessive values of � based on an approach used for bifurcation problems [15] has been implemented. It depends
on the convergence behavior of the Newton solver. Finally NITSOL has been modified to include backtrack-
ing in � as well as the standard backtracking in the Newton direction.

The definition of admissible grids, h-refinement rules and discretization are described in Section 2. In Sec-
tion 3 the error estimation technique is presented along with the h-refinement strategy. Section 4 includes
descriptions of the critical building blocks of the continuation method. Computational results for five prob-
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lems, four singularly perturbed and one regularly perturbed, are given in Section 5 while some conclusions are
made in Section 6.
2. Grid definition and discretization

Eqs. (1) and (2) are solved on a sequence of grids Gs, with corresponding values of �, �s, s P 0 until �s = �F.
It may happen that for some step s, Gs = Gs�1 or �s = �s�1 ” �F. Each grid Gs is generated from grid Gs�1 by
recursively trisecting a subset of its elements. Grid G0 is uniform and obtained by recursively trisecting X.
Thus, Gs has an octree structure with the root corresponding to X. Each vertex in the tree is either a terminal
(leaf) vertex or has eight subvertices. A vertex with eight subvertices is referred to as a parent vertex and the
eight subvertices are its offspring or children. The leaf vertices of the tree are called elements (unrefined ele-
ments in [40]). The elements of Gs are denoted by
Ds
n ¼ m1;s

n �
h1;s

n

2
;m1;s

n þ
h1;s

n

2

� �
� m2;s

n �
h2;s

n

2
;m2;s

n þ
h2;s

n

2

� �
� m3;s

n �
h3;s

n

2
;m3;s

n þ
h3;s

n

2

� �
; n ¼ 1; . . . ;Ns

el; ð3Þ
where ðm1;s
n ;m

2;s
n ;m

3;s
n Þ and ðh1;s

n ; h
2;s
n ; h

3;s
n Þ are the center and spacing of Ds

n, respectively and Ns
el is the number of

elements. Each element in the grid is made up of element interiors, faces, edges and nodes. These four building
blocks are henceforth referred to collectively as components. The level l of an element in the grid is the length
of the path from the root to the element. A grid is said to be uniform if all its elements are at the same level. A
grid is admissible in the sense of Babuška and Rheinboldt [4] if it is defined recursively by the following two
rules:

1. G0 is an admissible grid.
2. If Gs is an admissible grid and ~D is an element of Gs then the grid obtained from Gs and the eight elements

created by trisecting ~D is admissible.

Such grids contain two general types of components regular and irregular. A node C of Gs is regular if for

every element ~D 2 Gs such that C 2 ~D, C is a corner node of ~D. An edge C of Gs is regular if for every element
~D 2 Gs such that C 2 ~D its endpoints are corners of ~D. Similarly a face C in Gs is regular if for every element
~D 2 Gs such that C 2 ~D, the four corners of C are also corners of ~D. All element interiors are regular. Any
component that is not regular is irregular. Irregular components appear at the interface of two elements at
different levels in the grid. Two elements D 0 and D00 are said to be neighbors if their intersection contains
an edge of either D 0 or D00.

Several additional rules for governing grid refinement and coarsening have been proposed [5,27,40]. The
most important rule, the one-irregular rule dictates that on any edge or in the interior of any face there
can be no more than one irregular node. Equivalently, two neighboring elements cannot differ by more than
one level in the tree. Additional rules and details can be found in [28].

The three-dimensional bases depend on the one-dimensional Lobatto polynomials [38] on the interval
K = [m � h/2,m + h/2] given by
Upðn; h; mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � 1

2

r Z 2ðn�mÞ=h

�1

P p�1ðsÞds; p P 2; ð4Þ
where Pp�1(s) is the Legendre polynomial of degree p � 1. The Lobatto polynomials along with the linear hat
functions
U0ðn; h; mÞ ¼ h=2� ðn� mÞ
h

; U1ðn; h; mÞ ¼ h=2þ ðn� mÞ
h

; ð5Þ
form a basis for the space of polynomials of degree p on K. Henceforth I assume p > 1.
The finite element space on Ds

n is given by
Sp;e;f
Ds

n
¼: spanfUiðx1; h1;s

n ; m1;s
n ÞUjðx2; h2;s

n ; m2;s
n ÞUkðx3; h3;s

n ; m3;s
n Þjði; j; kÞ 2Sp;e;fg; ð6Þ
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where the index set Sp;e;f consists of the union of node-based, edge-based, face-based and interior-based index
sets, i.e., Sp;e;f ¼: SN [SE;p [SF ;p;f [SI;p;e. The component index sets are
SN ¼: fði; j; kÞj0 6 i; j; k 6 1g; ð7Þ
SE;p ¼: fði; j; kÞj0 6 i; j 6 1; 2 6 k 6 pg [ fði; j; kÞj0 6 i; k 6 1; 2 6 j 6 pg

[ fði; j; kÞj0 6 j; k 6 1; 2 6 i 6 pg; ð8Þ
SF ;p;f ¼: fði; j; kÞj0 6 i 6 1; 2 6 j; k 6 p; jþ k 6 f g [ fði; j; kÞj0 6 j 6 1; 2 6 i; k 6 p; iþ k 6 f g

[ fði; j; kÞj0 6 k 6 1; 2 6 i; j 6 p; iþ j 6 f g; ð9Þ
SI ;p;e ¼: fði; j; kÞj2 6 i; j; k 6 p; iþ jþ k 6 eg: ð10Þ
Note that the space depends on two parameters e and f. If e = 3p and f = 2p the result is the familiar tensor-
product space. An investigation of the effectiveness of different choices of e and f was performed in [32]. Based
on these results I have selected p = 4, e = 8 and f = 7 for the examples in Section 5.

The finite element space Sp;e;f
Gs

is the space of piecewise continuous polynomials of degree p whose restriction
to element Ds

n is Sp;e;f
Ds

n
. Thus, if U s 2 Sp;e;f

Gs
,

U sjDs
n
ðxÞ �

X
ð�i;�j;�kÞ2Sp;e;f

U s
n;�i;�j;�kU�iðx1; h1;s

n ; m1;s
n ÞU�jðx2; h2;s

n ; m2;s
n ÞU�kðx3; h3;s

n ; m3;s
n Þ; ð11Þ
where the U s
n;�i;�j;�k are the coordinates associated with element Ds

n. Since Gs satisfies the one-irregular rule the
support of all basis functions associated with regular components is uniformly bounded [5,40]. The Us

n;�i;�j;�k
associated with irregular components are constrained by continuity across element boundaries. The Us

n;�i;�j;�k
associated with regular grid components constitute the degrees of freedom for the problem. The total number
of degrees of freedom on Gs is denoted by Ns

dof .
The Galerkin form of (1) in the case of Dirichlet boundary conditions consists of determining u 2 H 1

EðXÞ
such that
aðu; vÞ ¼ ðf ; vÞ; 8v 2 H 1
0ðXÞ; ð12Þ
where
aðu; vÞ ¼
Z

X
Dru � rvdx1 dx2 dx3; ðf ; vÞ ¼

Z
X

fvdx1 dx2 dx3; ð13Þ
and the subscripts E and 0 further restrict functions to satisfy the Dirichlet and homogeneous Dirichlet bound-
ary conditions, respectively. The finite element approximation Us 2 Sp;e;f

Gs;E is determined as the solution of
aðU s; V sÞ ¼ ðf ; V sÞ; 8V s 2 Sp;e;f
Gs;0

: ð14Þ
Dirichlet boundary conditions are handled using the Lobatto interpolant as presented in [32].
Explicit utilization of (11) in (14) yields the nonlinear system
gðUs; �sÞ ¼ 0; ð15Þ

where Us is the vector of the degrees of freedom (coordinates associated with regular components) of length
Ns

dof corresponding to the solution Us on grid Gs. A Newton step for solving (15) consists in computing
JðUs; �sÞDUs ¼ �gðUs; �sÞ; ð16Þ
where J is the Jacobian matrix and updating Us via
Us  Us þ DUs: ð17Þ

The solution procedure Cont3d (see Fig. 1) is a continuation method consisting of three building blocks: a
refinement algorithm NewGrid that generates Gs from Gs�1 using error estimates; a nonlinear routine Solve



Fig. 1. Program Cont3d.
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(see Fig. 2) for solving (15) on Gs; and an adaptive strategy for selecting �s. These building blocks are discussed
in detail in Sections 3 and 4.

3. Error estimation and adaptivity

The h-refinement algorithm NewGrid and the a posteriori error estimator routine ErrEst that drives it were
developed for Href [32]. In this section they are described briefly for completeness.

To obtain an error estimate consider the augmented finite element solution Ws defined on each element Ds
n

by
W sðxÞjDs
n
¼ U sðxÞjDs

n
þ W 1;s

n wpþ1ðx1; h1;s
n ; m1;s

n Þ þ W 2;s
n wpþ1ðx2; h2;s

n ; m2;s
n Þ þ W 3;s

n wpþ1ðx3; h3;s
n ; m3;s

n Þ; ð18Þ
where
wpþ1ðn; h; mÞ ¼ hpþ1ðp � 1Þ!ðp þ 1Þ!
4ð2p � 1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2p þ 1

s
Upþ1ðn; h; mÞ: ð19Þ
The coefficients W 1;s
n , W 2;s

n and W 3;s
n are determined by requiring that
aðW s; bV s
kÞDs

n
¼ ðf ðUsÞ; bV s

kÞDs
n
; k ¼ 1; 2; 3; ð20Þ
where að�; �ÞDs
n

and ð�; �ÞDs
n

are given by (13) with X replaced by Ds
n. The function bV s

1ðxÞ is given by
bV s
1ðxÞ ¼ wpþ1ðx1; h1;s

n ; m1;s
n Þ/ðx2; h2;s

n ; m2;s
n Þ/ðx3; h3;s

n ; m3;s
n Þ; ð21Þ
where
/ðn; h; mÞ ¼
wpðn;h;mÞ

n�m ; p odd

wpþ1ðn;h;mÞ
n�m ; p even;

8<: ð22Þ



Fig. 2. Subroutine Solve.
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with comparable definitions for bV s
2 and bV s

3. On elements with no irregular nodes the error estimate has the
form
jEsj21;Ds
n
� jW s � Usj21;Ds

n

¼ ðp � 1Þ!
ð2p � 1Þ!

� �2 h1;s
n h2;s

n h3;s
n

4ð2p þ 1Þ ðððh
1;s
n Þ

pW 1;s
n Þ

2 þ ððh2;s
n Þ

pW 2;s
n Þ

2 þ ððh3;s
n Þ

pW 3;s
n Þ

2Þ þ h:o:t: ð23Þ
For elements with irregular nodes the formulas are more involved and depend on the location and number of
these nodes [32]. Results on the efficacy of this estimator can be found in [31,32].

The h-refinement strategy NewGrid is based on an earlier one-dimensional approach [14]. Error estimates
are measured in the root-mean-square-H1 norm [14]
jEsjDs
n;rms ¼

jEsj1;Ds
n

atolþ rtoljU j1;Ds
n

; jEsj2Gs;rms ¼
XNs

el

n¼1

jEsj2Ds
n;rms; ð24Þ
where atol and rtol are the absolute and relative error tolerances, respectively. If on Gs, jEjGs;rms > 1 elements

Ds
n with jEsjDs

n;rms >
rfffiffiffiffiffi
Ns

el

p are refined as described in Section 2 where rf is a refinement safety factor. Eight sibling

elements are coarsened into one element if the error indicators, jEsjDs
n;rms, on all eight are smaller than

cf

maxð1;2p�3Þ
ffiffiffiffiffi
Ns

el

p [14] where cf is the coarsening safety factor.
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4. Solution procedures

In this section a description of the main features of Cont3d, as shown in Fig. 1, is provided. Given the user-
supplied initial guesses �I and uI(x), the program begins by generating a default uniform initial grid G0 and a
Lobatto interpolant [29,32] U 0ðxÞ of uI(x). Then a solution U0 and corresponding �0 P �I are found using Init-

Solve. A second solution on the same grid with a slightly larger � value is then computed. For each step s P 1,
a sequence of routines is called until the tolerance is satisfied with � = �F. First a guess, ��s, of the next value of �
for which a solution of (15) can be obtained, is computed (see below). Next the error in Us�1 is computed by
ErrEst as described in Section 3. If Es�1 is too large a new grid Gs is generated by NewGrid (see Section 3),
otherwise the current grid is reused. In either case InitGuess computes an initial guess, Us, of the solution
by extrapolation from the two previous solutions and grids. Finally the Newton-based routine Solve solves
(15) and determines the size of the next decrease in �, D�s+1.

Solve is adapted from the nonlinear solver NITSOL [13,33]. The heart of Solve, as shown in Fig. 2, consists
in solving (15) using Newton’s method with backtracking, both the traditional backtracking in the Newton
direction [2,33] and an additional backtracking in �. The solution of (16) is computed by GMRES [35] with
the ILUT preconditioner of Saad [34]. If the reduction in igi is sufficient (see [13,33] for details) the Newton
step is accepted. If not, backtracking in the Newton direction DU is attempted (the value of this backtracking
is demonstrated in Example 5.5) [13,33]. If Newton backtracking fails the algorithm switches to backtracking
in �. A new value of � is generated by taking the reciprocal of the average of the reciprocals of the current � and
the last successful value of �, and the Newton iteration is restarted. The same approach is also used if on any
Newton step an error occurs in assembling either J or g. Error detection in the assembly routines for comput-
ing D, f and b and their partial derivatives (for J) must be supplied by the user (see Example 5.5).

Once convergence is attained the appropriate reduction in � for the next step, D�s+1, is estimated. When step
s is finished the next guess at the appropriate value of � is given by
��sþ1 ¼
�s

D�sþ1

; ð25Þ
where D�s+1 > 1. Two different strategies are employed depending on whether or not backtracking in � occurs.
If no �-backtracking is needed D�s+1 = qD�s. The algorithm for automatic selecting q is based on the hypoth-
esis [15] that
Ns
1 ¼ aD�; ð26Þ
where N s
1 ¼ kgðUs; �sÞk and that there exist C and r such that
lim
j!1

N s
jþ1

ðNs
jÞ

1þr ¼ C: ð27Þ
Then following [15] if the number of successful Newton iterations to achieve convergence is J, q is chosen so
that q < qmax and
q ¼
ftol

Ns
J�1

� �1=ð1þrÞJ�2

; J > J max

ftol
Ns

J

� �1=ð1þrÞJ�1

; otherwise;

8>><>>: ð28Þ
where ftol is the tolerance control for Ns
j (see Fig. 2). If J > 2 the rate r is estimated by computing
r ¼ 1

J � 2

XJ�2

i¼1

ln
Ns

iþ2

Ns
iþ1

� �
ln

Ns
iþ1

Ns
i

� � ; ð29Þ
otherwise r = 1. If backtracking in � occurs the previous history of � reductions is discarded. In this situation
D�s+1 = 0.9q�s/�s�1 where 0.9 represents a safety factor and q is given by (28). In either case I also require that
D�s+1 P D�min.
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The startup routine InitSolve adaptively selects an initial �, �0, on a uniform grid G0 if the user-prescribed
value �I is too small. InitSolve uses Newton’s method but with no backtracking in the Newton direction.
Instead, if Newton’s method is not converging � is increased by the ratio of the norms of g for two successive
iterates for which the Newton convergence criteria is not satisfied. This heuristic works well in the one example
of Section 5 where it is needed. InitSolve is invoked a second time on G0 with � = 5�0/4. This generates a second
solution for the predictor computed by InitGuess. Since computer-resource use is dominated by the solution
on the finest grid the cost associated with this second solution on G0 is negligible (cf. Example 5.1).

The routine InitGuess computes an initial guess Us for Solve in two steps. First Us�2 and Us�1 are interpo-
lated to Gs using the Lobatto interpolation strategy described in [32]. Then linear extrapolation in � is used to
generate U s from the interpolants. This amounts to an explicit Euler predictor.

The closest codes to my approach are a pair of one-dimensional continuation methods [8,9] due to Cash
et al. The first is based on the collocation strategy COLMOD and the second, ACDC uses deferred correction
coupled with Lobatto Runge–Kutta formulas. I will refer to these codes collectively as Cont1d. These codes
include backtracking in both � and the Newton direction comparable to the approach taken here.

In addition to differences due to dimensionality (direct versus iterative methods for the linear systems, for
example), discretization and error estimation, these codes solve (1) and (2) on the same grid twice for two val-
ues of � whereas Cont3d is not required to do so. As a result they use the second solution as the initial guess on
the same grid with a new � while I use an explicit Euler predictor. The adaptive algorithm for selecting the next
guess at � in Cont1d takes advantage of the solutions on two grids with the same � adjusted (in the nonlinear
case) by a simple convergence factor due to Seydel [36]. The approach in Cont3d is based solely on the con-
vergence of Newton’s method [15]. In Cont1d the user is required to specify the initial guess �I and no adaptive
procedure is invoked if a solution cannot be found. My approach, although it is simple and could easily be
done ‘‘by hand’’, proves effective for one problem.
5. Computational results

All calculations are performed in double precision either on a HP Xeon workstation with 8GB RAM
(Examples 5.1–5.3) or on a SGI Altix with 64GB RAM (Examples 5.4 and 5.5). For many of the modules
various parameters must be specified. Associated with ILUT are two parameters, the drop tolerance itol,
and the maximum row fill-in ifil. I use itol = 10�6 and ifil = 800 for Examples 5.1–5.3 and ifil = 2000 for
the final two examples. The tolerance for GMRES is chosen to be 10�12. The maximum size of the Krylov
subspace is set at 10 (see [32] for a discussion of this choice). The h-adaptivity safety factors rf and cf (cf.
Section 3) have values 0.8 and 0.1, respectively. I coded my own version of NITSOL. Its parameters (cf.
Fig. 2) are ftol = 10�4, utol = 10�4, t = 0.1, g = 0.5 and bmax = 5. The other parameter values (cf. Section
4) are emax = 7, Jmax = 5, qmax = 2 and D�min = 1.1. The initial grid is uniform 4 · 4 · 4 with lI = 2. For
comparison purposes a non-continuation code is also employed, referred to as Bench. It consists of the
adaptive refinement code Href with the simple nonlinear solver replaced by NITSOL. The codes are writ-
ten in a combination of Fortran 77 and Fortran 90. For the nonlinear equations no analytic or bench-
mark solutions are available for comparison. However, both numerical and asymptotic solutions for
the same equations in lower dimensions lend credence to the accuracy of the solutions obtained by the
two codes.

Example 5.1. Consider the linear equation [25]
� �Du ¼ 1� u; x 2 X � ð0; 1Þ3; ð30Þ

uðxÞ ¼ 0; x 2 oXd ;
ou
om
ðxÞ ¼ 0; x 2 oXn; ð31Þ
where oXd = {(x1,x2,x3) 2 oXjx3z = 0}. The exact solution of (30) and (31) is
uðxÞ ¼ 1� coshðð1� x3Þ=�Þ
coshð1=�Þ : ð32Þ
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Problem (30) and (31) is solved with �I = 0.01, �F = 0.0001, atol = 0.01, rtol = 0 and uI(x) = 0. Bench is able to
solve the problem with � = �F. On the finest grid it requires N 4

dof ¼ 438; 465. Bench needs 4 levels of refinement
and 1.2e4 s of CPU time.

The continuation history of Cont3d is shown in Table 1. It requires 5 steps and 4 levels of refinement but
only 1.0e4 s of CPU time. On the finest grid N 5

dof ¼ 427; 881. As expected since (30) is linear only two Newton
iterations per step are required. The number of GMRES iterations is almost fixed reflecting the flexibility of
the preconditioner.

For each step of continuation s, the error in the H1-seminorm jesj1 where es = us � Us, effectivity index
hs ¼ jE

sj1
jesj1

and percentage of time used are displayed in Table 2. The results indicate that the error estimator
is accurate throughout the computation. Thus, the error on the final grid satisfies the tolerance. Only 1%
of the time is consumed on each of the first three steps while the final step uses three quarters of the total time.
This validates the claim in Section 4 that the cost of the extra work in solving twice on the initial grid is insig-
nificant. It also demonstrates that continuation with a fixed grid would be computationally inefficient.

Example 5.2. Consider [37]
Table
The re
GMRE

s

0
1
2
3
4
5

Table
The er
Examp

s

0
1
2
3
4
5

��Du ¼� ð1þ uÞð1þ ð1þ uÞ2Þ; x 2 X � ð0; 1Þ3; ð33Þ
uðxÞ ¼ 0; x 2 oX: ð34Þ
Eqs. (33) and (34) are solved with �I = 0.1, �F = 0.002, atol = 0.01, rtol = 0 and uI(x) = 1. Bench solves the
problem with � = �F. On the finest grid after 4 levels of refinement N 4

dof ¼ 599; 485. The total CPU time needed
is 2.6e4 s.

From the continuation history displayed in Table 3 it is seen that Cont3d requires 4 steps and 3 refinement
levels. In the first step, with �1 = 0.0521, the uniform initial grid is still adequate. The finest grid is the same as
for the benchmark code. However, the total CPU time is 2.9e4 s. This slight increase is due to the additional
overhead associated with the continuation method. No backtracking is necessary. For this problem the Euler
predictor does not provide any savings since if it is turned off the total CPU time is 2.8e4 s. This is not sur-
prising given that the benchmark code has no predictor and runs faster on this problem.
1
finement level l, value of �s, number of degrees of freedom, Ns

dof , number of Newton iterations, Ns
NEWT and number of iterations of

S, Ns
GMRES , at each step s of Cont3d in solving Example 5.1

l �s Ns
dof Ns

NEWT Ns
GMRES

2 0.0100 3585 2 4
3 0.00464 8877 2 5
3 0.00108 8877 2 5
4 0.000125 29,313 2 5
5 0.000100 109,605 2 6
6 0.000100 427,881 2 6

2
ror in the H1-seminorm jesj1, effectivity index hs, and percentage of the total time spent, % time, at each step s of Cont3d in solving
le 5.1

jesj1 hs % Time

1.181 · 10�2 1.052 1
5.021 · 10�3 1.034 1
7.667 · 10�2 1.119 1
3.538 · 10�1 1.250 4
7.686 · 10�2 1.081 17
7.891 · 10�3 1.036 76



Table 3
The refinement level l, value of �s, number of degrees of freedom, Ns

dof , number of Newton iterations, Ns
NEWT and number of iterations of

GMRES, Ns
GMRES , at each step s of Cont3d in solving Example 5.2

s l �s Ns
dof Ns

NEWT Ns
GMRES

0 2 0.100 3585 5 11
1 2 0.0521 3585 4 9
2 3 0.0136 25,505 4 15
3 4 0.00232 122,941 5 22
4 5 0.00200 599,485 3 16
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Example 5.3. Consider
Table
The re
GMRE

s

0
1
2
3
4

� �Du ¼ u2; x 2 X � ð0; 1Þ3; ð35Þ
uðxÞ ¼ 1; x 2 oX: ð36Þ
Eqs. (35) and (36) are solved with �I = 0.01, �F = 0.001, atol = 0.01, rtol = 0 and uI(x) = 1. Bench solves (35)
and (36) with � = �F. On the final level N 4

dof ¼ 572; 661 and it uses 2.4e4 s of CPU time.

Table 4 shows the continuation history in solving (35) and (36) with Cont3d. It converges after 4 steps and 3
levels of refinement. Again the finest grid is the same as for the benchmark code. Cont3d uses 3.2e4 s of CPU
time. If the predictor in Cont3d is turned off the total CPU time increases to 4.1e4. This is primarily due to two
additional Newton iterations needed on the final step on the finest grid although the final number of
unknowns N 4

dof ¼ 570; 813 is slightly smaller.
In these three examples Bench is able to solve the problems with � = �F directly. In all cases the backtrack-

ing capability of NITSOL is not needed. This demonstrates how well adaptivity alone works in solving singu-
larly perturbed reaction-diffusion equations for moderately-sized values of �, even when the initial guesses are
crude. Since Jacobian assembly and preconditioner factorization are the most expensive steps [30] the differ-
ence in CPU time between Bench and Cont3d on the first example is due to the larger number of unknowns
needed by Bench on the final grid. In the other two examples the overhead costs of Cont3d make it less efficient
than Bench. The usefulness of the predictor is not clear-cut for these examples. The convergence to �F is rel-
atively rapid since Ns

NEWT < J max on almost all steps. The number of GMRES iterations is also modest in all
cases.

In the next problem �I is chosen so that Bench no longer works. This allows a simple demonstration of the
initialization strategy of Section 4. The final problem is significantly more difficult than the first four. Contin-
uation is essential since Bench is no longer capable of obtaining a solution.

Example 5.4. Consider the generalization to three dimensions of the singularly-perturbed equation from [7]:
� �Du ¼ 2ð1� ððx1Þ2 þ ðx2Þ2 þ ðx3Þ2ÞÞuþ u2 � 1; x 2 X � ð�1; 1Þ3; ð37Þ
uðxÞ ¼ 0; x 2 oX: ð38Þ
Eq. (37) is solved with �I = 0.1, �F = 0.01, atol = 0.01, rtol = 0 and uI(x) = 0. Bench is unable to solve the
problem on the initial grid, the Newton solver fails to converge.
4
finement level l, value of �s, number of degrees of freedom, Ns

dof , number of Newton iterations, Ns
NEWT and number of iterations of

S, Ns
GMRES , at each step s of Cont3d in solving Example 5.3

l �s Ns
dof Ns

NEWT Ns
GMRES

2 0.0100 3585 6 14
3 0.00681 25,505 3 10
4 0.00281 122,941 4 18
4 0.00100 122,941 4 20
5 0.00100 572,661 3 16
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The Newton solver also fails to converge in Cont3d for �I = 0.1. It then automatically increases � to 0.5094
for which a solution is obtained. As seen in the continuation history displayed in Table 5, six steps and four
levels of refinement are required to obtain a solution. On the finest grid N 7

dof ¼ 1; 790; 207. The code reaches
� = 0.01 on the fourth step. A total of 5.6e5 s of CPU time is needed. If the predictor is turned off the code
requires an additional Newton iteration on each step s, 1 6 s 6 3. This leads to a slightly larger CPU time
of 5.8e5 s though the value Ns

dof is the same on each step.
Isosurfaces U6 = �0.1, �0.5, �0.8, �1.5 and �2.1, along with a contour plot on the surface z = 0 of the

solution obtained by Cont3d are displayed in Fig. 3. The presence of boundary layers at each face can be
clearly seen. In one dimension the authors demonstrate the existence of multiple solutions [7]. In three dimen-
sions the solution shown in Fig. 3 (corresponding to the first of their solutions) is the only one I was able to
obtain despite trying a variety of initial guesses uI(x). As noted earlier a more robust approach would be to use
mountain-pass based strategies [12,16] to generate initial guesses.

Example 5.5. Consider the chemical reaction problem [17]
Table
The re
GMRE

s

0
1
2
3
4
5
6

Fig. 3.
Du ¼ �k2ð1þ b� uÞ exp
u� 1

�u

� �
; X � ð0; 1Þ3; ð39Þ

uðxÞ ¼ 1; x 2 oXd ;
ou
om
ðxÞ ¼ 0; x 2 oXn; ð40Þ
5
finement level l, value of �s, number of degrees of freedom, Ns

dof , number of Newton iterations, N s
NEWT , number of iterations of

S, Ns
GMRES and number of �-backtracking steps, Ns

��backtrack, at each step s of Cont3d in solving Example 5.4

l �s Ns
dof Ns

NEWT Ns
GMRES Ns

��backtrack

2 0.509 3585 6(5) 14(11) 1
2 0.265 3585 4 9 0
2 0.104 3585 5 11 0
3 0.0205 13,981 4 9 0
4 0.0100 106,513 4 10 0
5 0.0100 477,589 3 10 0
6 0.0100 1,790,207 3 13 0

Isosurfaces U6 = �0.10, �0.50, �0.80, �1.50 and �2.10 and a contour plot on the surface z = 0 of the solution of Example 5.4.
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where oXd = {(x1,x2,x3) 2 oXjx1 = 0 or x2 = 0 or x3 = 0}. Eqs. (39) and (40) are solved with b = k = 1,
�I = 0.2, �F = 0.05, atol = 0.05, rtol = 0 and uI(x) = 1. An error is flagged in the routines for computing f

and df
du if Us < 0 at any Gauss–Legendre integration point. Without this the code fails due to overflow. Bench

is unable to solve the problem on the initial grid since the Newton solver fails to converge.

The continuation history in solving (39) and (40) with Cont3d is shown in Table 6. On the first five steps the
problem is solved on the initial grid. Newton backtracking is used on the first Newton iteration of the first step
allowing the algorithm to continue without increasing �. At the third step �3 = 0.0636 but this leads to a solution
that is no longer positive after one Newton iteration. A new value of �3 = 0.0879 again results in Us < 0 at an
integration point after one Newton iteration leading to a second backtracking step in �. With �3 now 0.0917
Newton’s method converges in 5 iterations. A similar situation happens at steps five and seven but the algorithm
backtracks in � only once. The total time taken is 9.8e5 s with N 10

dof ¼ 1; 544; 267 unknowns on the final grid.
Without the predictor the code requires 13 steps and 6 levels of refinement. It uses 26 more Newton iterations,
12 more Newton-backtracks and one more �-backtrack than Cont3d. On the final grid N 13

dof ¼ 2; 565; 823. The
estimate of the error on the final grid is about half of Cont3d. The total CPU time taken is 2.2e6 s.

To study the usefulness of Newton backtracking I also ran Cont3d with this backtracking turned off allow-
ing only �-backtracking. In this case 11 steps and 4 refinement levels (from the uniform initial grid) are
required. Backtracking in � occurs on six of the steps for a total of 10 as opposed to 4 for Cont3d. The code
without Newton backtracking uses 10 more Newton iterations and has N 11

dof ¼ 994; 578 on the final grid. The
total CPU time of 7.1e5 s is less than that used by Cont3d while the estimated error is twice that of Cont3d.

A comparison of the performances of Cont3d and the two variants on this example is more difficult than in
the earlier examples since their continuation histories are so different. As noted in [32] fixed high-order
h-refinement codes tend to over-refine on the final grid yielding an error estimate that is significantly smaller
than the tolerance. This behavior magnifies differences in solution strategies leading to large variations in Ns

dof

and corresponding error estimates on final grids. As a result CPU time alone is misleading as an indicator of
effectiveness. If the number of Newton steps, and Newton- and �-backtracks are taken into account then
Cont3d appears to be the most robust.

The solution to (39) and (40) is displayed in Fig. 4 as a family of isosurfaces corresponding to U10 = 1.10,
1.50, 1.80, 1.95 and 2.00. All five surfaces are part of the boundary layer that occurs at the faces
x1 = x2 = x3 = 1.

6. Conclusions

Herein I have presented a high-order h-refinement algorithm coupled with continuation for solving regu-
larly and singularly perturbed reaction diffusion equations in three space dimensions. The continuation pro-
Table 6
The refinement level l, value of �s, number of degrees of freedom, Ns

dof , number of Newton iterations, Ns
NEWT , number of iterations of

GMRES, Ns
GMRES , number of �-backtracking steps, Ns

��backtrack and number of Newton-backtracking steps, Ns
NEWT-backtrack, at each step s of

Cont3d in solving Example 5.5

s l �s Ns
dof Ns

NEWT Ns
GMRES Ns

��backtrack Ns
NEWT-backtrack

0 2 0.2 3585 4 10 0 0
1 2 0.159 3585 6 15 0 1
2 2 0.142 3585 4 9 0 0
3 2 0.109 3585 7(5) 19(12) 2 0
4 2 0.0917 3585 5 13 0 0
5 2 0.0764 3585 8(7) 24(21) 1 0
6 3 0.0694 16,246 5 14 0 0
7 4 0.0581 60,598 10(9) 45(37) 1 0
8 5 0.0529 279,911 8 28 0 0
9 6 0.0500 630,210 5 18 0 0

10 7 0.0500 1,544,267 3 11 0 0

The numbers in parentheses are the numbers of iterations at the final � for that step.



Fig. 4. Isosurfaces U10 = 1.10, 1.50, 1.80, 1.95 and 2.00 of the solution of Example 5.5.
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cedure allows for backtracking, both in the Newton direction (first choice) and in the small parameter �.
Guesses of the solution from step to step are computed using an Euler predictor. As a comparison two other
algorithms are used. The first is the h-refinement procedure without continuation and the second involves
using the current solution interpolated to the next grid as a predictor.

The algorithms are used to solve five equations. The first equation is linear while the remaining four are
nonlinear. For the first three equations both methods are able to obtain solutions with the non-continuation
algorithm delivering slightly better performance as measured by total CPU time. Thus, adaptivity alone is suf-
ficient for some problems. For the final two examples only the continuation code Cont3d is successful. This is
especially true of the last example where both types of backtracking are invoked. On the last three examples
the Euler predictor enhances the performance.

Convergence of the error estimation strategy [31,32] has not been proved for regularly and singularly per-
turbed problems but coupled with continuation it appears to work well as demonstrated in the first example.

Boundary layers that require refinement, especially on box-shaped domains, are often aligned with the
domain boundaries. Further improvements in effectiveness could be achieved by using directional (aniso-
tropic) refinement [20]. The continuation algorithm described in this paper would likely extend to adaptive
methods on more general domains but the error estimation and h-adaptive strategies might need significant
revision.

For problems with multiple solutions a promising approach is to use algorithms based on the mountain
pass lemma [12,16] to obtain multiple solutions for � = �I. Each of these solutions would then serve as an initial
guess U0 for Cont3d. A key step in these methods is the solution of a linear elliptic equation for the steepest
descent direction. A variation of Cont3d could be used solve this equation improving accuracy and robustness.
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